

Animal remains from Kutaisi Fortress, Georgia, 2021–2023

Ana Davitashvili^{*1}, Jacek Hamburg², Rafał Bieńkowski³,
Roland Isakadze^{4,5,6}

¹ Department of Bioarchaeology, Faculty of Archaeology, University of Warsaw,
ul. Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
e-mail: a.davitashvili@uw.edu.pl (corresponding author)

² Kutaisi Archaeological Science Station,
Krukowski Polish-Georgian Interdisciplinary Research Center,
9 Tamar Mepe Street, 4600 Kutaisi, Georgia

³ Department of Modeling and Optimization of Dynamic Systems,
Systems Research Institute of the Polish Academy of Sciences,
6 Newelska Street, 01-447 Warsaw, Poland

⁴ Kutaisi Historical-Architectural Museum-Reserve,
National Agency for Cultural Heritage Preservation of Georgia,
7 Nazarishvili Street, 4600 Kutaisi, Georgia

⁵ Georgian National Museum,
3 Shota Rustaveli Avenue, 0105 Tbilisi, Georgia

⁶ Department of Archaeology, Faculty of Humanities,
Akaki Tsereteli State University,
59 Tamar Mepe Street, 4600 Kutaisi, Georgia

The city of Kutaisi is located in western Georgia, in the area where the Rioni River flows from the Greater Caucasus to the Colchian plain (Figure 1). Medieval Kutaisi extended along both banks of the Rioni River. The principal part of the city was situated on the rocky hill of the right bank, known as Ukimerioni, where the fortified urban area was divided into three main components: (1) the citadel, (2) the inner city, and (3) the lower city. The settlement on the left bank of the Rioni River developed primarily during the Late Medieval period. At the centre of the city's historical core stood the monumental Bagrati Cathedral, which continues to dominate the surrounding landscape. Archaeological investigations conducted in various areas of Kutaisi since 1964 have revealed evidence of a long and complex occupational sequence, encompassing cultural layers ranging from the modern period back to the Middle Bronze Age (Lanchava 2015).

The current research area lies on the terrace just northeast of the Bagrati Cathedral (42°16'39"N, 42°42'17"E). The terrain preserves deep cultural deposits, although modern activity—especially the presence of houses built before the 1980s—disturbed a considerable part of the stratigraphy. Despite this, the area still contains well-preserved medieval features, including building remnants, pits, and several burials.

A joint Georgian–Polish team, within the framework of the Kutaisi Archaeological Landscape Project (KALP), conducted systematic excavations at the site from 2019–2023. The collaboration operated under a memorandum between the National Agency for Cultural Heritage Preservation of Georgia, the University of Warsaw, and the Krukowski Polish-Georgian Interdisciplinary Research Center. Field seasons focused on documenting the site's stratigraphy and investigating the history of the hill occupation. Since earlier Georgian archaeological work between 2009 and 2012 revealed a group of medieval inhumations, the team paid particular attention to the burial zone northeast of Bagrati Cathedral.

Excavations in Trenches 2 and 3 uncovered a long sequence of occupation. The earliest recorded activity dates to the Middle Bronze Age. This is followed by building remains, including wattle-and-daub and wood structures, dating to the Late Bronze–Early Iron Age and Early Antiquity (6th to 4th centuries BCE, Hughes 2015), based on stratigraphy and preliminary pottery analysis. The Medieval layers just above contain several archaeological remains, such as buildings and industrial installations, as well as a group of burials dating to the 8th–10th centuries CE (FTMC-PA43-5: 1220±28 BP, 702–887 cal. AD at 95.4% probability; FTMC-DI71-4: 1128±29 BP, 875–994 cal. AD at 95.4% probability). Burials N1, N2, N4–N10, N12, and N13 belong to

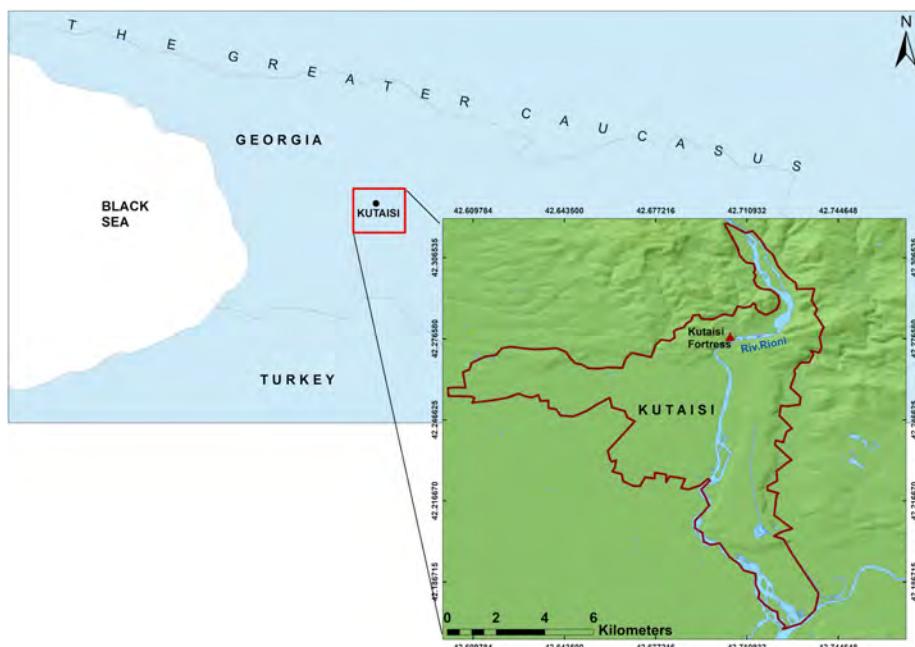


Figure 1. The location of Kutaisi Fortress. Figure by E. Davitashvili.

this medieval mortuary layer, and they provide the contexts for the faunal remains analysed here.

This report provides a brief overview of the animal remains that were documented during the 2021–2023 excavation seasons. All faunal material comes from contexts which might be chronologically associated with the burials. Although analyses of the human remains are ongoing, the faunal evidence provides essential contextual information, helping to clarify how these burial deposits formed.

This faunal assemblage was analysed following standard zooarchaeological protocols (Reitz & Wing 2008; Davis 1987). All bones were gently cleaned and sorted before study. The taxonomic analysis was carried out following the comparative atlas of Schmid (1972). The Minimum Number of Individuals (MNI) and the Number of Identified Specimens (NISP) were calculated, and taphonomic features—including cut marks, burning, and other surface modifications—were documented according to the guidelines of González (2018). In addition, standard reference manuals and

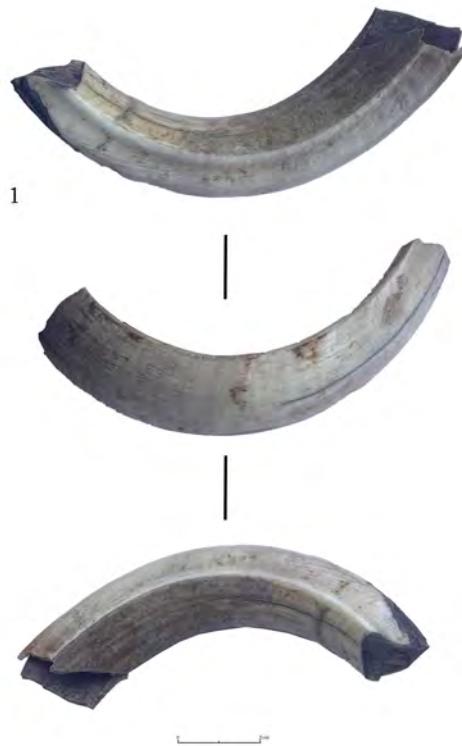


Figure 2. C₁ L wild boar. Figure by D. Gagoshidze.

databases, including the 9th edition of the NABONE zooarchaeological database, were consulted to support accurate identifications and ensure comparability with regional and international datasets.

The faunal assemblage discussed here, from the Kutaisi fortress, derives from 24 bags representing 20 archaeological contexts (stratigraphic layers) and comprises a total of 171 specimens (NISP). From these, 82 specimens were identifiable to taxon and/or anatomical element (NISP), while 89 specimens (52.0%) consist of undiagnostic bone fragments, mainly highly fragmented long bones, ribs, and cranial pieces. Domestic taxa dominate the identified assemblage. Sheep/goat (*Ovis/Capra*) are represented by 32 identifiable specimens, including metapodials, fibulae, ribs, scapular fragments, cranial elements, phalanges, horns, and mandibles. Cattle (*Bos taurus*) are represented by 34 identifiable specimens, including vertebrae, ribs, metapodials, fibulae, humeri, scapulae, mandibles, phalanges, and teeth. Pig (*Sus domesticus*) is

Figure 3. Examples of burnt remains: 1. Red deer, right rib shaft; 2. Cattle, right rib shaft with neck; 3. Sheep/goat, rib shaft; 4. Sheep/goat, left femur, proximal part. Figure by D. Gagoshidze.

comparatively rare, represented by six identifiable specimens, including a humerus, molars, mandible fragments, and scapular fragments. In addition, a single wild boar (*Sus scrofa*) specimen is present, represented by a tusk fragment (Figure 2) and a deer (*Cervus*) with rib fragments. Several specimens ($n=9$) were identified only as large mammal or large herbivore and were excluded from taxon-specific quantification to avoid artificial inflation of species counts. Age-at-death information is limited and is restricted to a broad distinction between adult and subadult individuals, based on the presence of unfused epiphyses and juvenile mandibles with erupting teeth. Subadult remains are present among both sheep/goat and cattle, including a sheep/goat mandible with teeth, a subadult sheep/goat tibia, a subadult cattle mandible, and an unfused cattle humerus. Minimum Number of Individuals (MNI) was calculated following the principles outlined by González (2001), using the most frequently occurring diagnostic element while accounting for side and age, and calcu-

Figure 4. Cut marks on remains: 1. Sheep/goat, part of sternum; 2. Sheep/goat, left rib shaft; 3. Large mammal, rib, proximal part; 4. Cattle rib shaft. Figure by D. Gagoshidze.

lated separately for each taxon within individual contexts. Context-level MNI values were subsequently summed to provide an estimate for the assemblage as a whole. This procedure results in an assemblage-level MNI of 11 individuals, comprising 4 sheep/goat, 4 cattle, 1 pig, 1 wild boar and 1 deer. Burning occurs frequently, affecting 37 per 171 elements (21.6%). The colour of the burnt bones range from reddish hues to dark black, indicating exposure to different temperatures or conditions (Figure 3). Some burnt bones also show cut marks, presented in Figure 4.

The faunal assemblage from Medieval burial contexts at the Kutaisi fortress comprises 171 specimens dominated by domestic sheep/goat and cattle, with minor representation of pig and wild taxa. Zooarchaeological analysis indicates a conservative MNI of 11 individuals. The combination of extensive fragmentation, frequent burning, and the presence of cut marks indicates that the faunal remains probably derive primarily from routine food processing and consumption activities.

Acknowledgments: We are grateful to the Department of Bioarchaeology, and in particular to Arkadiusz Sołtysiak, for his guidance and support throughout the development of this research. We thank the Georgian authorities, the National Agency for Cultural Heritage Preservation of Georgia, and the Kutaisi Historical-Architectural Museum-Reserve for facilitating the excavation. We are also grateful to all members of the excavation team for their dedication, hard work in the field and for collecting all materials, especially Teona Bubuteishvili and Shalva Buadze. We acknowledge the University of Warsaw for providing funding to support this research. We are also thankful to the Georgian National Museum, especially Maia Bukhsianidze, who helped us to identify some non-diagnostic elements. Finally, we are thankful to Elene Davitashvili for Figure 1 and David Gagoshidze for Figures 2, 3 and 4.

References

Davis S.J.M. (1987), *Zooarchaeology*, Cambridge: Cambridge University Press.

González J. (2001), *Introduction to zooarchaeology*, London: Springer.

Hughes R.C. (2015), *The archaeology of a Colchian landscape: Results of the eastern Vani survey*, unpublished PhD dissertation, University of Michigan, USA.

Lanchava O. (2015), *The archaeology of Kutaisi*, 2nd edition, Kutaisi: PWF.

Reitz E.J., Wing E.S. (2008), *Zooarchaeology*, 2nd edition, Cambridge: Cambridge University Press.

Schmid E. (1972), *Atlas of animal bones for prehistorians, archaeologists and quaternary geologists*, Amsterdam: Elsevier.